253 research outputs found

    Proof of principle of a high-spatial-resolution, resonant-response gamma-ray detector for Gamma Resonance Absorption in 14N

    Full text link
    The development of a mm-spatial-resolution, resonant-response detector based on a micrometric glass capillary array filled with liquid scintillator is described. This detector was developed for Gamma Resonance Absorption (GRA) in 14N. GRA is an automatic-decision radiographic screening technique that combines high radiation penetration (the probe is a 9.17 MeV gamma ray) with very good sensitivity and specificity to nitrogenous explosives. Detailed simulation of the detector response to electrons and protons generated by the 9.17 MeV gamma-rays was followed by a proof-of-principle experiment, using a mixed gamma-ray and neutron source. Towards this, a prototype capillary detector was assembled, including the associated filling and readout systems. Simulations and experimental results indeed show that proton tracks are distinguishable from electron tracks at relevant energies, on the basis of a criterion that combines track length and light intensity per unit length.Comment: 18 pages, 16 figure

    Polynomial kernels for 3-leaf power graph modification problems

    Full text link
    A graph G=(V,E) is a 3-leaf power iff there exists a tree T whose leaves are V and such that (u,v) is an edge iff u and v are at distance at most 3 in T. The 3-leaf power graph edge modification problems, i.e. edition (also known as the closest 3-leaf power), completion and edge-deletion, are FTP when parameterized by the size of the edge set modification. However polynomial kernel was known for none of these three problems. For each of them, we provide cubic kernels that can be computed in linear time for each of these problems. We thereby answer an open problem first mentioned by Dom, Guo, Huffner and Niedermeier (2005).Comment: Submitte

    Quantum railroads and directed localization at the juncture of quantum Hall systems

    Full text link
    The integer quantum Hall effect (QHE) and one-dimensional Anderson localization (AL) are limiting special cases of a more general phenomenon, directed localization (DL), predicted to occur in disordered one-dimensional wave guides called "quantum railroads" (QRR). Here we explain the surprising results of recent measurements by Kang et al. [Nature 403, 59 (2000)] of electron transfer between edges of two-dimensional electron systems and identify experimental evidence of QRR's in the general, but until now entirely theoretical, DL regime that unifies the QHE and AL. We propose direct experimental tests of our theory.Comment: 11 pages revtex + 3 jpeg figures, to appear in Phys. Rev.

    On the Crossing Spanning Tree Problem

    Full text link

    The benzene polycarboxylic acid (BPCA) pattern of wood pyrolyzed between 200°C and 1000°C

    Full text link
    Environmental charcoals represent a poorly defined part of the black carbon (BC) combustion continuum and may differ widely in their chemical and physical properties, depending on combustion conditions and source material. The benzene polycarboxylic acid (BPCA) molecular marker method is well established to quantify the BC component in charcoal, soil and sediment, although observed variations between labs could stem from subtle differences in methods. The objectives of this study were to identify and improve potential sources of analytical uncertainty. The improved method was then used to qualitatively characterize wood charred at 200–1000 °C. One significant improvement of the BPCA method was to replace citric acid with phthalic acid as an internal standard, which is more stable in acidic solution and more similar to the target compounds. Also, including a soil reference material as a quality control in each analysis proved to be a robust tool to detect for variations in reproducibility. For the thermosequence, elemental O/C and H/C ratios typically decreased with temperature to 60.03 at 1000 °C, whereas BPCA concentrations peaked at 700 °C. With temperature B6CA proportions increased consistently (6–98%), except for a plateau at 250–500 °C. Thus, relative contributions of B6CA reflected the pyrolysis temperature and probably also the degree of condensation of the charcoals we investigated. Future work will show if our results can be directly related to charcoal produced under oxygen limited conditions, including charcoal formed at wildfires or so called biochar for agricultural use

    Generating Sustainable Value from Open Data in a Sharing Society

    Get PDF
    Part 1: Creating ValueInternational audienceOur societies are in the midst of a paradigm shift that transforms hierarchal markets into an open and networked economy based on digital technology and information. In that context, open data is widely presumed to have a positive effect on social, environmental and economic value; however the evidence to that effect has remained scarce. Subsequently, we address the question how the use of open data can stimulate the generation of sustainable value. We argue that open data sharing and reuse can empower new ways of generating value in the sharing society. Moreover, we propose a model that describes how different mechanisms that take part within an open system generate sustainable value. These mechanisms are enabled by a number of contextual factors that provide individuals with the motivation, opportunity and ability to generate sustainable value

    Holographic Algorithms Beyond Matchgates

    Get PDF
    Holographic algorithms based on matchgates were introduced by Valiant. These algorithms run in polynomial-time and are intrinsically for planar problems. We introduce two new families of holographic algorithms, which work over general, i.e., not necessarily planar, graphs. The two underlying families of constraint functions are of the affine and product types. These play the role of Kasteleyn’s algorithm for counting planar perfect matchings. The new algorithms are obtained by transforming a problem to one of these two families by holographic reductions. We present a polynomial-time algorithm to decide if a given counting problem has a holographic algorithm using these constraint families. When the constraints are symmetric, we give a polynomial-time decision procedure in the size of the succinct presentation of symmetric constraint functions. This procedure shows that the recent dichotomy theorem for Holant problems with symmetric constraints is polynomial-time decidable

    Non-crossing dependencies: Least effort, not grammar

    Get PDF
    The use of null hypotheses (in a statistical sense) is common in hard sciences but not in theoretical linguistics. Here the null hypothesis that the low frequency of syntactic dependency crossings is expected by an arbitrary ordering of words is rejected. It is shown that this would require star dependency structures, which are both unrealistic and too restrictive. The hypothesis of the limited resources of the human brain is revisited. Stronger null hypotheses taking into account actual dependency lengths for the likelihood of crossings are presented. Those hypotheses suggests that crossings are likely to reduce when dependencies are shortened. A hypothesis based on pressure to reduce dependency lengths is more parsimonious than a principle of minimization of crossings or a grammatical ban that is totally dissociated from the general and non-linguistic principle of economy.Postprint (author's final draft

    A search for neutral Higgs bosons in the MSSM and models with two scalar field doublets

    Get PDF
    A search is described for the neutral Higgs bosons h^0 and A^0 predicted by models with two scalar field doublets and, in particular, the Minimal Supersymmetric Standard Model (MSSM). The search in the Z^0 h^0 and h^0 A^0 production channels is based on data corresponding to an integrated luminosity of 25 pb^{-1} from e^+e^- collisions at centre-of-mass energies between 130 and 172GeV collected with the OPAL detector at LEP. The observation of a number of candidates consistent with Standard Model background expectations is used in combination with earlier results from data collected at the Z^0 resonance to set limits on m_h and m_A in general models with two scalar field doublets and in the MSSM. For example, in the MSSM, for tan(beta) > 1, minimal and maximal scalar top quark mixing and soft SUSY-breaking masses of 1 TeV, the 95% confidence level limits m_h > 59.0 GeV and m_A > 59.5 GeV are obtained. For the first time, the MSSM parameter space is explored in a detailed scan.A search is described for the neutral Higgs bosons h^0 and A^0 predicted by models with two scalar field doublets and, in particular, the Minimal Supersymmetric Standard Model (MSSM). The search in the Z^0 h^0 and h^0 A^0 production channels is based on data corresponding to an integrated luminosity of 25 pb^{-1} from e^+e^- collisions at centre-of-mass energies between 130 and 172 GeV collected with the OPAL detector at LEP. The observation of a number of candidates consistent with Standard Model background expectations is used in combination with earlier results from data collected at the Z^0 resonance to set limits on m_h and m_A in general models with two scalar field doublets and in the MSSM. For example, in the MSSM, for tan(beta) > 1, minimal and maximal scalar top quark mixing and soft SUSY-breaking masses of 1 TeV, the 95% confidence level limits m_h > 59.0 GeV and m_A > 59.5 GeV are obtained. For the first time, the MSSM parameter space is explored in a detailed scan
    corecore